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ABSTRACT 

A formal solution of Liouville’s equation for both 
the classical and the quantum mechanical case i s  pre- 
sented. The. derivation closely follows the approach 
employed by Feynman in his papers on the theory of pos- 
itrons in The Physical Review,  Volume 76, pages 749, 769, 
1949. A scattering operator S i s  found which connects 
the distribution function at time t ’  with the distribution 
function at any later time t .  Using a diagram, each term 
of this scattering operator can be represented uniquely and 
conveniently. The topological structure of these diagrams 
i s  the same i n  the classical a s  wel l  as  in the quantum 
mechanical case. 

1. INTRODUCTION 

The Liouville equation represents a natural start ing point for s tudies  of non-equilibrium 

s ta t i s t ica l  mechanics ( see  Ref. 1-7). T h e  many-body problem encountered in s ta t is t ical  mechanics 

may advantageously be handled by the mathematical methods especially developed for the 

infinite many-body problem of quantum field theory ( see  Ref. 8) .  A s  an example, Prigogine and 

collaborators ( see  Ref. 9) used the S matrix formalism in some of their papers. Furthermore, the 

well-known approach of Prigogine and collaborators to the solution of Liouville’s equation by 

means of Fourier transforms and a diagram technique ( see  Ref. 10) bears much formal resemblance 

to field theoretical methods. 

In this  Report a formal solution of the Liouville equation is presented; the solution 
is based  on Feynman’s approach to the solution of the Schrodinger equation ( s e e  Ref. 11). The  

actual derivation is given in Section 11. An integral kernel plays the central role of the develop- 

ment. This kernel i s  somewhat similar to the phase-space transformation function introduced by 

Ross  and Kirkwood (see  Ref.  12), although i t  is a Green’s function rather than a solution of the 
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homogeneous Liouville equation. The  various contributions of a perturbation expansion of th i s  

kernel give rise to corresponding contributions to  the distribution function which may be classi-  

fied by diagrams. 

The  modifications due to quantum mechanics are a l so  outlined for the  case  of the W i p e r  

distribution function ( see  Ref. 13). The  physical significance of the diagrams i s  clarified in 

Section 111 by means of  an equivalent perturbation expansion of the equations of motion. 

II. DERIVATION 

The  c lass ica l  Liouville equation for an N-particle system may be written as 

where R i s  the abbreviation for the  set of position coordinates rl, r,, -.. , rN of the N particles. 

Similarly V s tands  for vl, v,, ..- vN the velocit ies of the particles.  F F,, F,, .-. , F,, where 

F,. i s  the force acting on particle j divided by i t s  mass .  F may be a function of both position and 

velocity. The symbol V V, is an abbreviation for 

N 

v . v , =  1 v i - v  
'i 

A kernel G ( R ,  V, t ;  R, 'V , ' t ' )  i s  now introduced which allows for the expression of the  

distribution function f ( R ,  V, t )  for t > t ' by 

if i t  i s  known a t  an earlier time t [  The integration runs over the  complete phase space  

d R  ' d k ' / ' =  d 3 1 ;  d3rg  .*. d 3 u ;  d 3 u ;  . The kernel G h a s  the following properties: 
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lim G ( R , V , t ;  R , 'V , ' t ' )  = 6 ( R - R ' )  S ( V - V ' )  
t +  t '  

(4) 

Equation (3) shows that G i s  a Green's function of the Liouville equation. Equation (4) is 

necessary for Eq. (2) to be consistent. Equations (2, (3) and (4) are strongly reminiscent of 

Feynman's approach to the solution of Schrodinger's equation. In fact, if the operator 

V - VR + F - Vv i s  replaced by the  Hamiltonian H and the distribution function f i s  replaced by 

the wave function $, Eqs .  (2), (3) and (4) are identical with Feynman's theory. (For  the  account 

of th i s  approach see Ref. 12.) It i s  now proposed to solve Eq. (3) by an iteration method assum- 

ing weak interactions. We obtain 

+ v .  

G = Go + GI + G, + 

V R )  Go = 6 ( R - R ' )  8 W - V ' )  6 ( t - t ' )  

T h e  solution of Eq. (6) i s  immediately written1 a s  

Go ( R ,  V ,  t ;  R,'V,' t '1 = 6 (V  - V '1 6 [ R  - R '- V '  ( t  - t '1 ] S ( t  - t '1 

introducing the s tep  function 

l f o r x  > 0 

O f o r z  < 0 
s ( 4  = 

(6)  

(8)  

(9) 

'The solution Eq. (8) i s  the retarded Green's function. The advanced Green's function i s  found 
by replac ingS(t  - t') by - S ( t ' - t ) .  
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It  is easi ly  seen that Eq. (4) i s  satisfied for expression (8). From Eq. (7) i t  i s  apparent 

G, ( R , V , t ;  R, ’V, ’ t ‘ )  = - f d t ” d R ” d V ” G o  ( R , V , t ;  R,”V,”t”) 

( 10) 

x F (R ,”V” )  - Vvll Gn-l (R,”V,”t”; R , ’V , ’ t ’ )  

Successive application of Eq. (10) reveals after straightforward calculation that 

t1  

t l  t’ t ’  

t 
G,(R, V , t ;  R, ’V, ’ t ‘ )  = 1 d t l  d t ,  .-. / L n - l  d t ,  J dV2 dV3 -.- dV, 

r n 1 
x (- 1)” 6 R - v  ( t - t l )  - 1 7 ( t j i - l  - t j )  1 j = 2  

I- 1 

Inserting the expressions (8) and (11) into Eq. (2) and performing the phase-space integrations a s  

indicated has  the following result. The distribution function a t  time t i s  connected with the 

initial distribution function at  t ime  t ’  through a scattering operator S 

f (R ,  v ,  t )  = s f [R - v ( t  - t ’ ) ,  v ,  t ’ ]  

where 

co 
s =  1 s, 

n = O  

and for n 2 1 

t 1  t 

S, = (-11, J d t ,  J d t 2  ... 
t t’  

(so = 1) 

(12) 

(13) 
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with 

n n 

Pa = vv - ( t a - t ' ) V R  - 1 [ B v - ( t a - t  P R  1 =Pa,+ c Pap ( 15) 
p=a+1 p= a+l 

The  gradient Vv in Eq. (15) i s  always connected with a gradient VR in the specific configuration 

P 4 = vv - ( t , - t  P R  )V (16) 

The  operator P 
time label p. Furthermore, Vv does  not a c t  on the argument R - V ( t  - tp ) .  In other words 

is defined as acting only on that function of R and V which contains the  same .P 

indicating by an arrow on which argument the gradient operates. Inserting Eq. (15) into (14) i t  

i s  s een  that S, can be expressed by a sum of terms of the following structure 

In Eq. (18) the condition i s  ra > a but otherwise arbitrary and the sum runs over all n! possi-  

b i l i t i es  to pick a s e t  of r, > a. Any particular term of the sum may be represented by a diagram. 

We define the  diagrams in the following way: An nth order diagram cons is t s  of n + 1 vertices 

labe led  with a time coordinate t ,  start ing with the latest time t l  on the  left (Fig. la) and ending 

with a vertex assoc ia ted  with the ear l ies t  time, t ' the  ini t ia l  time, on the  right. Starting from 

each vertex u (except the one assoc ia ted  with t ' )  there is one and only one directed solid l ine 

which ends  at any arbitrary vertex p with an earlier time including the last vertex (Fig.  Ib). The  

last vertex assoc ia ted  with the  initial time t ' i s  called the external vertex (each diagram h a s  only 

one external vertex) all the others are called internal vertices. A solid l ine  start ing from any 

internal vertex and ending at any other internal vertex i s  called an internal line. If it ends  on 

the external vertex however i t  i s  called an external line. Figure IC shows a poss ib le  fifth order 

diagram with two external and three internal lines; similarly, Fig.  I d  shows a diagram with three 

exteriial and two internal l ines.  The  number of l ines  i s  equal to the number of internal vertices; 
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indicating therefore the  order of the diagram. There a re  n! different diagrams of order n correspond- 

ing  to the  n! different ways of connecting any two of the n + 1 vertices by a solid l ine such tha t  

only one solid l ine s t a r t s  from any internal vertex. We assoc ia te  with each vertex u the  factor 

-F  [ R  - V ( t  - la), V ]  and with an internal l ine  the  operator Pap which a c t s  in the manner spec- 

if ied by Eq. (17) on the  - F  [ R  - V ( t  - t p ) ,  V ]  assoc ia ted  with vertex p. Furthermore, assoc ia ted  

with an external l ine starting at the vertex u i s  the operator 

P = v, - ( ta -  t ' ) V R  (16a) 
a /  

which a c t s  on the initial distribution function represented by the external vertex. We now see 

that any given diagram (Fig.  IC ,  d for example) represents uniquely one  t e rn  of the sum (18). As 

an example, Fig. 2 shows the three lowest-order diagrams. 

According to the rules outlined ab0v.e the first-order contribution (Fig. 2a) i s  given by 

The  second-order contribution (Fig. 2b) i s  given by 

Here P,, ac ts  on the  succeeding F whereas Pz, a c t s  on the ini t ia l  distribution function as 

explained above. The other second-order contribution (Fig.  2c) i s  given by 

t l  t 

S i  = 1 dtl  J dt ,  F [ R  - V ( t  - t l ) , V ]  - P,, F [ R  - V ( t  - t z ) , V I  * P,, (21) 

1 )  t l  

where both P ac t  on the initial distribution function. 

Turning now to the quantum-mechanical Liouville equation for the Wigner distribution 

function ( see  Ref. 15), discussion i s  restricted to the  c a s e  in which the force F i s  derived from 
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a potential F(R) = -vR + ( R ) .  T h e  Liouville equation for the W i p e r  distribution function f ( w )  i s  

well known ( s e e  Ref. 16) to be 

Here the operator VR a c t s  only on the potential +(R) .  The s ine  operator is defined by its power 

ser ies  expansion. It is easi ly  seen that the scattering operator S for f(') may s t i l l  be determined 

by the same diagrams as  were used  in the classical  case.  Only the rules of associat ing an 

internal vertex and an internal l ine to a given mathematical quantity have to be changed. An 

internal vertex u now represents 

2 R 

n 
- sin ( 2M V, -.) + [ R  - v ( t  - t ~ ]  ( 23) 

An internal sol id  l ine connecting the ver t ices  u and p represents 

P '  QP = - ( t  a P R  - t ) V  ( 24) 

where 0, a c t s  on the potential  associated with vertex p .  The operator P 

replaced by PiP Eq. (24) in the c lass ica l  c a s e  if the forces  do not depend explicitly on the 

velocity as is seen from Eq.. (17). According to Eq. (23) and (24), the complete expression for 

the part  of the diagram shown in Fig.  Ib i s  

of Eq. (16) i s  a lso QP 

2 R 

ii 
- sin ( 2M V, pi4) + [ R  - v ( t  - t2 ) l  ... ( 25) 

An external solid l ine i s  still represented by Eq (16a). A s  an example, Fig. 2b may be 

considered, which represents  

t 1  2 
t 

Si = d t l  d t2  - 
i i  t l  t '  

2 

ii 2M 
+ [ R  - ~ ( t  - t l ) ]  - sin ( A  V, . p2,) 
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111. DISCUSSION 

The  rules which generate the scattering operator S being established, the consequences 

at th i s  point are interesting. F i r s t  of a l l ,  i t  may be seen  that the  nth order term of the se r i e s  for 

S cons i s t s  of a sum over n diagrams with a varying number of internal and external l ines.  The  

physical significance of an internal or external l ine will be clarified by the following consider- 

ations. In the zeroth order the motion of the particles i s  undisturbed. They proceed along straight 

l ines.  In fact the scattering operator being So = 1 to the  zeroth order, Eq. (12) becomes 

f ( R , V , t )  = f [ R  - V ( t - t ' ) ,  V , t ' ]  (26) 

T o  see how precisely the higher-order terms of the scattering operator introduce devi- 

ations from the unperturbed straight l i nes  of the  zeroth order approximation, a perturbation 

scheme applied directly to the equations of motion i s  outlined which i s  completely equivalent to 

the perturbation analysis for the scattering operator described in Sec. 11. Confining ourselves to 

the c lass ica l  equations of motion and to forces which depend only on the position, we have 

together with the  initial conditions 

R ( t ' )  = R '  R ( t 7  = v ( 27 a) 

A small expansion parameter A i s  introduced 

R = Ro + A R ,  + A2 R ,  + * a *  

Inserting Eq. (28) into Eq. (27) g ives  the  success ive  approximations 

.. 
Ro = 0 

R ,  = F ( R o )  

e, = R ,  . D  F ( R o )  
RO 

( 28) 
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and the initial conditions are 

Ro ( t ' )  = R ' do ( t  ') = v 

R ,  ( t ' )  = R ,  ( t ' )  = 0 

R2 ( t ' )  = R2 ( t ' )  = 0 

It  follows from Eq. (29) and (29a) that  the successive approximations to the acceleration are 

given by 

(3Oa) 
.. 
R,  = 0 

A glance back to Eq. (19), (ZOL and (21) and a comparison with Eq. (30b) and (3Oc) 

reveals  that  Eq. (19), the first-order scattering operator, t akes  into account a deviation from the 

unperturbed straight paths  of the par t ic les  to  exactly the same degree of approximation on which 

E q  (3Ob) is based. Equation (201, corresponding to the diagram with one internal l ine (Fig.  2b), 

t akes  into account a first-order correction to the first-order effect given by Eq. ( D ) ,  and i t  is 

therefore of second order. The exact analog to this correction, expressed by an internal l ine,  is  

Eq. (30c). But th i s  i s  not all that might happen in second order! Actually, a new "scattering" 

may be introduced a t  some other time between t ' and t .  But Eq. (21), corresponding to the 

diagram with two external l ines  (Fig. 2c), represents precisely the contribution from this  event 

again to the correct order of magnitude. 

These  findings may now immediately be generalized to an nth order contribution. 

Suppose there i s  a specif ic  nth-order diagram which represents one of the n! nth order contribu- 

t ions to  the scattering operator. This diagram generates n + 1 diagrams of the (n + 1)st  order. By 

adding a new internal vertex to the left of the nth-order diagram and connecting i t  to either of the 

n other internal vertices n new possible diagrams with one more internal line i s  obtained. 

Connecting i t  with the external vertex, one new diagram with one more external l ine i s  obtained. 

From the previous discussion i t  i s  clear that the (n + 1)st  order diagrams generated from a 

specif ic  nth-order diagram take into account a correction to the path of any one particle in the 

sense of Eq. ( 3 0 ~ ) .  T h i s  i s  possible in n different ways corresponding to the n different new 

internal l ines ,  whereas the possibil i ty of a new scattering i s  represented by the addition of a 

new external line. In short, internal l ines  represent corrections to already existing scatterings 

and external l ines  represent the introduction of new scatterings.  Of course, i t  should be realized 
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that  th i s  explanation i s  more or l e s s  heuristic, since there i s  no explicit introduction of s c a t t e p  

ing cross-sections. The  scattering operator, rather, gives the detailed time dependence of the 

distribution function, and i s  therefore completely equivalent to the exact knowledge of the orbits 

of all the particles involved. This is far too much information to be useful.  In fact, to extract 

useful information averaging procedures must be employed. Singlet, doublet, e tc .  distribution 

functions may be introduced, and subsequently, Kirkwood’s coarse-graining device ( s e e  Ref. 171, 
“Stosszahlansatz,” etc. may be used. However, this  is beyond the scope of the present Report. 

Page 10 



Jet Propulsion Laboratory Technical Report No. 32-10 

REFERENCES 

1. Kirkwood, G. G. “The Statistical-Mechanical Theory of Transport Processes” ,  Journal of 

Chemical Phys ics ,  Vol. 15 (19471, p. 72. 

2. Ross,  J. and J. G. Kirkwood. “The Statistical-Mechanical Theory of Transport Processes .  

VIII. Quantum Theory of Transport in Gases”,  , Vol. 22 (1954), p. 1094. 

3. Mori, H., and S. Ono. “The Quantum-Statistical Theory of Transport Phenomena. I. On the 

Boltzmann-Vehling-Uhlenbeck Equation,” Progress  of Theoretical Phys ics ,  Japan, Vol. 8 

(1952), p. 327. 

4. Green, H. S. “Boltzmann’s Equations in Quantum Mechanics,” Proceedings of the 

Phys ica l  Society, London, Section A, Vol. 64 (1953), p. 3%. 

5. Brout, R., and I. Prigogine. “Statistical Mechanics of Irreversible Processes ,”  Phys ica ,  

Vol. 22 (19561, p. 621. 

6. Prigogine, I., and J. Philippot. “On Irreversible P rocesses  in Non-Uniform Systems,” 

, Vol. 23 (195’7), p. 569. 

7. Saenz, A. W. “Transport Equation in  Quantum Stat is t ics  for Spinless  Molecules,” The 
Phys ica l  Review, Vol. 105(1957), p. 546. 

8. University of California. The  Operator Formalism in Quantum Perturbation Theory, by B. 
S. de Witt. Berkeley, California, September 1955. 

9. Prigogine, I. and F. Hefiin. “On the General Perturbational Treatment of Irreversible 

Processes ,”  Bulletin de l’acadgmie d e s  Sciences Belge, Vol. 11 (1957), p. 814. 

10. Resibois ,  P. “Theorie Formelle Du Scattering Classique,” Phys ica ,  Vol. 25 (1959), 

p. 725. 

11. Free  University of Brussels. Statistical Mechanics and Thermodynamics of Irreversible 

P rocesses ,  by I. Prigogine. Brussels ,  Belgium, Technical Report EORDC PR 59-18. 

12. Schweber, S. S., H. A. Bethe and F. de  Hoffman. Mesons and Fie lds .  Vol. 1, p. 54. 

Evanston, Illinois, Row Peterson and Co., 1956. 

13. Ross, J.,  and J. G. Kirkwood. “The Statistical-Mechanical Theory of Transport Processes .  

VIII. Quantum Theory of Transport in Gases,” Journal of Chemical Phys ics ,  Vol. 22 

(19541, p. 1094. 

Ross,  J. “The Statistical-Mechanical Theory of Transport Processes .  IX. Contribution to 

the Theory of Brownian Motion”, 

14. 

, Vol. 24(1956), p. 375. 

Page 11 



Technical Report No. 32-10 Jet Propulsion Laboratory 

15. Wiper, E. P. “On the Quantum Correction for Thermodynamic Equilibrium,” The Physical 

Review, Vol. 40 (19321, p. 749. 

16. Irving, J .  M. and R. W. Zwanzig. “The Statistical Mechanical Theory of Transport 

Processes. V. Quantum Hydrodynamics,” Journal of Chemical Physics, Vol. 19 (19511, 

p. 1173. 

17. Kirkwood, J. G. “The Statistical Mechanical Theory of Transport Processes. I .  General 

Theory”, , Vol. 14 (1946), p .  180. 

Page 12 



Jet Propulsion Laboratory Technical Report No. 32-10 

0 0 0 0 0 XI ' 

I 2 3 4 5 
a 

'2 4 

I 2 3 4 5 
b 

CONSTRUCTION OF A DIAGRAM 
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C 
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d 

TWO POSSIBLE FIFTH-ORDER DIAGRAMS 

Fig. 1. Construction and Examples of 
Fifth-Order Diagrams 
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I 

a 

FIRST-ORDER DIAGRAM 

I 2 

b 

THE TWO SECOND-ORDER DIAGR 

~~ 

Fig. 2. First and Second-Order Diagrams 
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